Home Search Collections Journals About Contact us My IOPscience

Analysis of spin-phase diagrams for $R_x Y_{1-x} Co_5$ (R identical to Pr, Tb, Dy and Ho) and $R_x Pr_{1-x} Co_5$ (R identical to Sm, Gd, Tb, Dy, Ho and Er)

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1993 J. Phys.: Condens. Matter 5 3635 (http://iopscience.iop.org/0953-8984/5/22/014)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.96 The article was downloaded on 11/05/2010 at 01:22

Please note that terms and conditions apply.

Analysis of spin-phase diagrams for $R_x Y_{1-x} Co_5$ ($R \equiv Pr$, Tb, Dy and Ho) and $R_x Pr_{1-x} Co_5$ ($R \equiv Sm$, Gd, Tb, Dy, Ho and Er)

Han Xiu-feng[†], Jin Han-min[†], C C Sun[‡] and Yan Yu[†]

† Department of Physics, Jilin University, Changchun 130023, People's Republic of China
 ‡ Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China

Received 14 October 1992, in final form 10 February 1993

Abstract. The spin-phase diagrams for the pseudo-binary compounds of $R_x Y_{1-x} Co_5$ ($R \equiv Pr$, Tb, Dy and Ho) and $R_x Pr_{1-x} Co_5$ ($R \equiv Sm$, Gd, Tb, Dy, Ho and Er) are reproduced well by the calculations which use the fitted R-Co exchange field and CEF parameters evaluated previously by some of the authors of this paper and co-workers by comparing the calculations with other experimental data.

1. Introduction

The values of the exchange field H_{ex} and the crystalline-electric-field (CEF) parameters A_{nm} at the magnetic rare-earth ion sites in RCo₅ (R \equiv Pr, Nd, Sm, Gd, Tb, Dy, Ho and Er) [1], $R_x Y_{1-x} Co_5$ (R \equiv Pr [2], Nd [3], Tb [4] and Dy [4]) and $R_x Sm_{1-x} Co_5$ (R \equiv Pr [2] and Nd [5]) have been evaluated by some of the authors of this paper and co-workers by comparing the calculations and experimental data. The experimental data, which have been reported by previous workers, include mainly the temperature dependence of the spontaneous magnetization $M_s(T)$ of the compound, the temperature dependence of the magnetic moment $M_R(T)$ of the rare-earth ion, the temperature dependence of the cone angle $\theta(T)$ made by M_s with the c axis, and the magnetization curves M(H) along the crystal axes, all measured on single crystals. In the calculations, the rare-earth ions were assumed to be triply ionized, and the anisotropies of the magnetic moment M_{Co} of the Co sublattice and of the R-Co exchange interaction have been taken into account.

This paper shows that the spin-phase diagrams of the pseudo-binary compounds of $R_x Y_{1-x}Co_5$ ($R \equiv Pr$, Tb, Dy and Ho) and $R_x Pr_{1-x}Co_5$ ($R \equiv Sm$, Gd, Tb, Dy, Ho and Er) which have been reported by several workers [6-12] can be reproduced well by the calculations which use the fitted parameters in the above-mentioned studies. For Ho_xR_{1-x}Co_{5+0.5x} ($R \equiv Y$ and Pr), including HoCo_{5.5}, however, the parameters which have been evaluated for HoCo_{5.5} in the previous work [1] are slightly revised for a better fit.

2. Details of the calculation

The RCo₅ (R \equiv rare earths) compounds have a CaCu₅-type hexagonal structure with the space group P6/mmm [6–12], in which the rare-earth site has the point symmetry D_{6h}.

Some rare-earth ions are replaced by the Co dumbbells randomly for non-stoichiometric RCo_{5+y} compounds [6,9–12]. It was assumed that the rare-earth ions are triply ionized. The Hamiltonian of the R ion in the $R_x R'_{1-x} Co_5$ compounds consists of the spin-orbit coupling interaction, the CEF interaction, the R-Co exchange interaction and the Zeeman energy, i.e.

$$\mathcal{H}(\mathbf{R}, x) = \lambda(\mathbf{R})S(\mathbf{R}) \cdot L(\mathbf{R}) + \mathcal{H}_{CEF}(\mathbf{R}, x) + 2\mu_{B}S(\mathbf{R}) \cdot H_{ex}(\mathbf{R}, x, T, \theta_{Co}) + \mu_{B}[L(\mathbf{R}) + 2S(\mathbf{R})] \cdot H.$$
(1)

Here, S(R) and L(R) are the total spin and orbital angular moments of the R ion, and H is the applied field. The CEF interaction in the (100) coordinate system with the z and x axes along the c and a axes is formulated as

$$\mathcal{H}_{CEF}(\mathbf{R}, x) = \sum_{\mathbf{R}=2,4,6} A_{n0}(\mathbf{R}, x) C_{n0}(\mathbf{R}) + A_{66}(\mathbf{R}, x) [C_{66}(\mathbf{R}) + C_{6_n-6}(\mathbf{R})]$$
(2)

where A_{nm} are the CEF parameters,

$$C_{nm}(\mathbf{R}) = \sum_{j} \frac{4\pi}{2n+1} Y_{nm}(\theta_{\mathbf{R}j}, \varphi_{\mathbf{R}j})$$
(3)

 $Y_{nm}(\theta_{Rj}, \varphi_{Rj})$ are the spherical harmonics, and θ_{Rj} and φ_{Rj} are the polar and azimuthal angles of the position vector r of the *j*th 4f electron. The R-R exchange interaction, which is much smaller than the R-Co exchange interaction, was neglected. Both the magnetic moment $M_{Co}(x, T, \theta_{Co})$ of the Co sublattice and the exchange field $H_{ex}(R, x, T, \theta_{Co})$ are anisotropic and are represented as

$$M_{\rm Co}(x, T, \theta_{\rm Co}) = M_{\rm Co}(x, T)[1 - p(T)\sin^2\theta_{\rm Co}]$$
(4)

$$\boldsymbol{H}_{ex}(\mathbf{R}, x, T, \theta_{Co}) = \boldsymbol{H}_{ex}(\mathbf{R}, x, T)[1 - p'(T)\sin^2\theta_{Co}]$$
(5)

where θ_{Co} is the cone angle between M_{Co} and the c axis, p(0) = 0.037 and p'(0) = 0.020[13]. p(T) was taken from that of YCo₅ [14] and the relation p'(T)/p'(0) = p(T)/p(0) was assumed. $H_{ex}(\mathbf{R}, x, T)$ was assumed to be proportional and antiparallel to $M_{Co}(x, T)$ as

$$H_{\rm ex}(\mathbf{R}, x, T) = -H_{\rm ex}(\mathbf{R}, 1, 0)M_{\rm Co}(x, T)/M_{\rm Co}(1, 0).$$
(6)

The values of $M_{\rm Co}(x, T)/M_{\rm Co}(x, 0)$ are treated in the same way as those of YCo₅ after scaling the different Curie temperature $T_{\rm C}$ [14]. $M_{\rm Co}(x, T = 0)$ is linear to the R concentration x with the value of $M_{\rm Co}(1, 0)$ given in [1]. For a given applied field Hand a direction of $H_{\rm ex}({\rm R}, x, T, \theta_{\rm Co})$, the eigenvalues $E_n({\rm R}, x)$ and eigenstates $|n({\rm R}, x)\rangle$ $(n = 1, 2, \ldots, \sum_J (2J + 1))$ are obtained by diagonalizing the $\sum_J (2J + 1) \times \sum_J (2J + 1)$ matrix of equation (1). Mixing of the first excited J multiplet for the Pr ion with $\lambda({\rm Pr}) = 610$ K [15], mixing of the two lowest excited J multiplets for the Sm ion with $\lambda({\rm Sm}) = 410$ K [15], and no mixing for the other heavy rare-earth ions were taken into account.

The free energy is given by

$$F(H, H_{ex}, T) = -xk_{\rm B}T\ln[Z({\rm R}, x)] + K_{1{\rm Co}}(x, T)\sin^2\theta_{{\rm Co}} - M_{{\rm Co}}(x, T, \theta_{{\rm Co}}) \cdot H$$
(7)

for the $R_x Y_{1-x} Co_5$ system and

$$F(H, H_{ex}, T) = -xk_{B}T \ln[Z(R, x)] - (1 - x)k_{B}T \ln[Z(Pr, x)] + K_{1Co}(x, T) \sin^{2}\theta_{Co} - M_{Co}(x, T, \theta_{Co}) \cdot H$$
(8)

for the $R_x Pr_{1-x} Co_5$ system. Here

$$Z(\mathbf{R}, x) = \sum_{n} \exp\left(\frac{-E_n(\mathbf{R}, x)}{k_{\rm B}T}\right)$$
(9)

and $K_{1Co}(x, T)$ is the magnetocrystalline anisotropy constant of the Co sublattice per formula unit, which is taken from that of YCo₅ after scaling the different Curie temperature $T_{C}(R, x)$ [14]. $K_{1Co}(x, T)$ and $T_{C}(R, x)$ are linear to the R concentration x with the values of $K_{1Co}(1, 0)$ given in [1] and $T_{C}(R, 1)$ given in [16]. The equilibrium direction of $H_{ex}(R, x, T, \theta_{Co})$ was determined from minimization of the free energy.

Table 1. The values of $2\mu_B H_{ex}(0)$ and A_{nm} for the R ions in $R_x Y_{1-x} Co_5$ ($R \equiv Pr$, Tb, Dy and Ho) and $R_x Pr_{1-x} Co_5$ ($R \equiv Sm$, Gd, Tb, Dy, Ho and Er) compounds.

R	x	$\frac{2\mu_{\rm B}H_{\rm ex}(0)}{\rm (K)}$	A ₂₀ (K)	A ₄₀ (K)	А ₆₀ (К)	А ₆₆ (К)	Reference
Pr	1.0-0.0	1300	25	-75	250	-600	[1]
Sm	1.00.0	440	-330	-50	0	0	[1]
Gd	1.0-0.0	290					[1]
ТЪ	1.0	265	-340	-240	, 0	0	[1,4]
	0.8	261	-350	-230	0	0	[4]
	0.6	256	-375	-225	0	0	[4]
	0.4	249	-390	-220	0	0	[4]
	0,3	246	400	-215	0	0	This work
	0.2	243	-405	-210	0	0	This work
	0.1	240	-415	-205	0	0	This work
Dy	1.0	235	-425	-140	180	0	[4]
	0.8	232	-455	-175	180	0	This work
	0.6	228	-485	-210	180	0	This work
	0.5	227	-500	-230	180	0	[4]
	0.35	224	-520	-250	180	0	[4]
	0.2	222	-545	-280	180	0	[4]
	0.1	220	-560	-300	180	0	[4]
Но	1.0-0.0	220	-590	-250	0	70	This work
	1.0	220	-615	-260	-30	0	[1]
Er	1.0-0.0	210	-350	-100	0	0	[1]

The magnetic moments of the R ions are given by

$$M_{\rm R}(x,T) = \sum_{n} \frac{\mu_n({\rm R},x) \exp[-E_n({\rm R},x)/k_{\rm B}T]}{Z({\rm R},x)}$$
(10)

where

$$\mu_n(\mathbf{R}, x) = -\mu_{\mathbf{B}} \langle n(\mathbf{R}, x) | L(\mathbf{R}) + 2S(\mathbf{R}) | n(\mathbf{R}, x) \rangle$$
(11)

Figure 1. Spin-phase diagrams for $R_x Y_{1-x} Co_5$ with (a) $R \equiv Pr$, (b) $R \equiv Ho$, (c) $R \equiv Tb$ and (d) $R \equiv Dy$: •, experimental data from [6] for $R \equiv Pr$, from [9] for $R \equiv Tb$, from [10] for $R \equiv Dy$ and from [11] for $R \equiv Ho$; O, experimental data from [9] for $R \equiv Pr$; •, experimental data from [8] for $R \equiv Pr$; ----, calculations.

and the magnetic moments of the $R_x Y_{1-x}Co_5$ and $R_x Pr_{1-x}Co_5$ systems are given by $M(T) = -\partial F/\partial H = xM_R(x, T) + M_{Co}(x, T, \theta_{Co})$ (12) $M(T) = -\partial F/\partial H = xM_R(x, T) + (1-x)M_{Pr}(x, T) + M_{Co}(x, T, \theta_{Co})$ (13) respectively.

3. Results and discussion

Table 1 lists the values of the parameters $H_{ex}(T=0)$ and A_{nm} used in this work for the Pr,

Figure 2. Spin-phase diagrams for $R_x Pr_{1-x} Co_5$ with (a) $R \equiv Sm$, (b) $R \equiv Gd$, (c) $R \equiv Tb$, (d) $R \equiv Dy$, (e) $R \equiv Ho$ and (f) $R \equiv Er$: \bullet , experimental data from [6]; -----, calculations.

Sm, Gd, Tb, Dy, Ho and Er ions in $R_x Y_{1-x} Co_5$ ($R \equiv Pr$, Tb, Dy and Ho) and $R_x Pr_{1-x} Co_5$ ($R \equiv Sm$, Gd, Tb, Dy, Ho and Er). The parameters for the Ho ions in HoCo_{5.5} previous evaluated [1] are also listed for reference. The parameters for the Pr, Sm, Gd, Ho and Er ions are invariant with the R concentration x, while those for the Tb and Dy ions vary slightly with x in a linear way. The parameters A_{nm} are invariant with temperature.

Figures 1 and 2 and figures 4 and 5 show comparisons of the calculations with experiments. The full curves represent the calculations, and the symbols the experiments. The agreement between them is satisfactory. Figures 1(a)-(d) show the spin-phase diagrams for $R_x Y_{1-x}Co_5$ with $R \equiv Pr$, Ho, Tb and Dy, respectively. For lower- $x Pr_x Y_{1-x}Co_5$ compounds, three independent experimental data are available [6-8], and our calculation reproduces the results of [7,8]. Figures 2(a)-(f) show the spin-phase diagrams for $R_x Pr_{1-x}Co_5$ with $R \equiv Sm$, Gd, Tb, Dy, Ho and Er, respectively. Figures 3(a)-(c) demonstrate the calculated cone angles of M_{Pr} , M_R , M_{Co} and M_s at 4.2 K for $R_x Pr_{1-x}Co_5$ with $R \equiv Gd$, Dy and Ho, respectively. Figure 4 shows the temperature dependence of the cone angle of M_s for $Ho_x Y_{1-x}Co_{5+0.5x}$ (x = 1.0, 0.5 and 0.2) and those of M_{Co} and M_{Ho} for HoCo_{5.5}, and figure 5 shows the temperature dependences of M_s , M_{Co} and M_{Ho} for HoCo_{5.5}.

Figure 6 shows the ground-state energies for the rare-earth ions in RCo₅ at 0 K as functions of the cone angle of M_{Co} . It can be seen that the Co sublattice, Er and Sm ions have increasingly large axial magnetic anisotropy (MA). The axial MA values for the rare-

Figure 3. x dependences of the cone angles of $M_{\rm Pr}$, $M_{\rm R}$, $M_{\rm Co}$ and $M_{\rm s}$ at 4.2 K for $R_x \Pr_{1-x} Co_5$ with (a) $R \equiv Gd$, (b) $R \equiv Dy$ and (c) $R \equiv Ho$.

Figure 4. Temperature dependences of the cone angle of M_s for Ho_x Y_{1-x} Co_{5+0.5x} (x = 1.0, 0.5 and 0.2) and those of M_{Ho} and M_{Co} for HoCo_{5.5}: Δ , \blacktriangle , experimental data from [11]; \bigcirc , $\textcircled{\bullet}$, experimental data from [12]; ----, calculations.

earth ions are connected with the positive second-order Stevens coefficients. The Pr ion has an easy cone magnetic structure with small MA, and the Ho, Tb and Dy ions have an easy basal-plane magnetic structure with increasingly large MA from Ho to Dy. The second-order Stevens coefficients are negative for these ions. The competition between the axial MA of the Co sublattice and the cone or planar MA of the rare-earth ions results in the cone magnetic

Figure 5. Temperature dependences of the spontaneous magnetization and magnetic moments of the Co sublattice and Ho ion for $HoCo_{5.5}$: •, experimental data from [12]; -----, calculations.

Figure 6. The ground-state energies of the rare-earth ions in RCo₅ at 0 K as functions of the cone angle of M_{CO} .

structure for $PrCo_5$ and $HoCo_{5.5}$ and the basal-plane magnetic structure for $TbCo_{5.1}$ and $DyCo_{5.2}$ at low temperatures. Since the MA of the rare-earth ions decreases more rapidly than the MA of the Co sublattice, the magnetic structure of $R_x Y_{1-x}Co_5$ transforms from conical to axial for $R \equiv Pr$ and Ho and from planar to conical and then to axial for $R \equiv Tb$ and Dy with decrease in x and increase in temperature. The spin-phase diagrams for the $R_x Pr_{1-x}Co_5$ compounds can be explained in the same way.

It is noticeable that, although there is strong evidence to show that the valence of the Pr ion in PrCo₅ is fluctuating [2], the parameters for the ion which have been evaluated on the assumption that the ion is triply ionized reproduce the series of experiments on $R_x Pr_{1-x}Co_5$ successfully as shown in this work and [2].

Acknowledgments

This work has been supported by the National Natural Science Foundation of China and Magnetism Laboratory, Institute of Physics, Chinese Academy of Sciences, Beijing, People's Republic of China.

References

- [1] Zhao Tie-song, Jin Han-min, Guo Guang-hua, Han Xiu-feng and Chen Hong 1991 Phys. Rev. B 43 8593
- [2] Jin Han-min, Kenji Shimizu, Han Xiu-feng, Yan Yu and Zhao Tie-song 1992 J. Phys.: Condens. Matter 4 8609
- [3] Jin Han-min, Zhao Tie-song, Yan Yu and Han Xiu-feng 1992 Solid State Commun. 82 915

- [4] Han Xiu-feng, Jin Han-min, Chen Hong, Guo Guang-hua and Zhao Tie-song 1992 J. Magn. Magn. Mater. 115 281
- [5] Han Xiu-feng, Zhao Tie-song and Jin Han-min 1991 J. Magn. Magn. Mater. 102 151
- [6] Ma B M, Boltich E B, Sankar S G, Wallace W E, Malik S K and Tomy C V 1991 J. Appl. Phys. 69 6061
- [7] Yermolenko A S 1983 Phys. Met. Metallogr. (USSR) 55 (3) 74
- [8] Pareti L, Moze O, Solzi M and Bolzoni F 1988 J. Appl. Phys. 63 172
- [9] Yermolenko A S and Rozenfel'd Ye V 1980 Phys. Met. Metallogr. (USSR) 48 (3) 44
- [10] Yermolenko A S and Rozhda A F 1983 Phys. Met. Metallogr. (USSR) 55 (2) 53
- [11] Yermolenko A S and Rozhda A F 1982 Phys. Met. Metallogr. (USSR) 54 (4) 64
- [12] Decrop B, Deports J and Lemaire R 1983 J. Less-Common Met. 94 199
- [13] Ballou R, Deportes J, Gorges B, Lemaire R and Ousset J C 1986 J. Magn. Magn. Mater. 54-7 465
- [14] Alameda J M, Givord D, Lemaire R and Lu Q 1981 J. Appl. Phys. 52 2079
- [15] Hufner S 1978 Optical Spectra of Transparent Rare-Earth Compounds (London: Academic) p 34
- [16] Klein H P, Menth A and Perkins R S 1975 Physica B 80 153